Resources

Data, models, references, etc

Scientific literature - a selection

Between the early 2000s and 2020, more than 15 000 research articles including the keyword biochar were published in academic journals. In 2020, about 4000 articles were published. This corresponds to more than 10 new articles every day. At this rate, it is literally impossible - for researchers as well as individuals - to read all the research that exists on biochar.

Therefore, we suggest below few major references, grouped by topics (click to expand):

  • Bird, M. I.; Wynn, J. G.; Saiz, G.; Wurster, C. M.; McBeath, A. The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43 (1), 273–298. https://doi.org/10.1146/annurev-earth-060614-105038

  • Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal – a Review. Biol. Fertil. Soils 2002, 35 (4), 219–230. https://doi.org/10.1007/s00374-002-0466-4

  • Kern, D. C.; Lima, H. P.; da Costa, J. A.; de Lima, H. V; Browne Ribeiro, A.; Moraes, B. M.; Kämpf, N. Terras Pretas: Approaches to Formation Processes in a New Paradigm. Geoarchaeology 2017, 32 (6), 694–706. https://doi.org/10.1002/gea.21647

  • Hagemann, N.; Spokas, K.; Schmidt, H.-P.; Kägi, R.; Böhler, A. M.; Bucheli, D. T. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10 (2). https://doi.org/10.3390/w10020182

  • Lehmann, J.; Cowie, A.; Masiello, C.; Kammann, C.; Woolf, D.; Amonette, J.; Cayuela, M.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat Geosci (in Press. 2021, 14 (December). https://doi.org/10.1038/s41561-021-00852-8

  • Woolf, D.; Amonette, J. E.; Street-Perrott, F. A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. https://doi.org/10.1038/ncomms1053

  • Tisserant, A.; Morales, M.; Cavalett, O.; Toole, A. O.; Weldon, S.; Rasse, D. P.; Cherubini, F. Resources , Conservation & Recycling Life-Cycle Assessment to Unravel Co-Benefits and Trade-Offs of Large-Scale Biochar Deployment in Norwegian Agriculture. Resour. Conserv. Recycl. 2021, No. September, 106030. https://doi.org/10.1016/j.resconrec.2021.106030

  • Matuštík, J.; Hnátková, T.; Kočí, V. Life Cycle Assessment of Biochar-to-Soil Systems: A Review. J. Clean. Prod. 2020, 259, 120998. https://doi.org/10.1016/J.JCLEPRO.2020.120998

  • Sundberg, C.; Karltun, E.; Gitau, J. K.; Kätterer, T.; Kimutai, G. M.; Mahmoud, Y.; Njenga, M.; Nyberg, G.; Roing de Nowina, K.; Roobroeck, D.; Sieber, P. Biochar from Cookstoves Reduces Greenhouse Gas Emissions from Smallholder Farms in Africa. Mitig. Adapt. Strateg. Glob. Chang. 2020. https://doi.org/10.1007/s11027-020-09920-7

  • Peters, J. F.; Iribarren, D.; Dufour, J. Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. Environ. Sci. Technol. 2015, 49 (8), 5195–5202. https://doi.org/10.1021/es5060786

  • Roberts, K. G.; Gloy, B. A.; Joseph, S.; Scott, N. R.; Lehmann, J. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 2010, 44 (2), 827–833. https://doi.org/10.1021/es902266r

  • Woolf, D.; Lehmann, J.; Lee, D. R. Optimal Bioenergy Power Generation for Climate Change Mitigation with or without Carbon Sequestration. Nat Commun 2016, 7, 13160. https://doi.org/10.1038/ncomms13160

  • Ippolito, J. A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J. M.; Fuertes-Mendizabal, T.; Cayuela, M. L.; Sigua, G.; Novak, J.; Spokas, K.; Borchard, N. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2 (4), 421–438. https://doi.org/10.1007/s42773-020-00067-x

  • Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054

  • Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H. P.; Smebye, A. B.; Cornelissen, G. Waste Timber Pyrolysis in a Medium-Scale Unit: Emission Budgets and Biochar Quality. Sci. Total Environ. 2020, 137335. https://doi.org/10.1016/J.SCITOTENV.2020.137335

  • Cornelissen, G.; Pandit, N. R.; Taylor, P.; Pandit, B. H.; Sparrevik, M.; Schmidt, H. P. Emissions and Char Quality of Flame-Curtain “Kon Tiki” Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS One 2016, 11 (5), e0154617. https://doi.org/10.1371/journal.pone.0154617

  • Woolf, D.; Lehmann, J.; Fisher, E. M.; Angenent, L. T. Biofuels from Pyrolysis in Perspective: Trade-Offs between Energy Yields and Soil-Carbon Additions. Environ. Sci. Technol. 2014, 48 (11), 6492–6499. https://doi.org/10.1021/es500474q

  • Kan, T.; Strezov, V.; Evans, T. J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.185

  • Sharma, A.; Pareek, V.; Zhang, D. Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

  • Joseph, S.; Cowie, A. L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M. L.; Graber, E. R.; Ippolito, J. A.; Kuzyakov, Y.; Luo, Y.; Ok, Y. S.; Palansooriya, K. N.; Shepherd, J.; Stephens, S.; Weng, Z. (Han); Lehmann, J. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021. https://doi.org/10.1111/gcbb.12885

  • Schmidt, H.-P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T. D.; Sánchez Monedero, M. A.; Cayuela, M. L. Biochar in Agriculture – A Systematic Review of 26 Global Meta-Analyses. GCB Bioenergy 2021. https://doi.org/10.1111/gcbb.12889

  • Tisserant, A.; Cherubini, F. Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation. L. 2019, 8 (12). https://doi.org/10.3390/land8120179

  • Campos, J.; Fajilan, S.; Lualhati, J.; Mandap, N.; Clemente, S. Life Cycle Assessment of Biochar as a Partial Replacement to Portland Cement. IOP Conf. Ser. Earth Environ. Sci. 2020, 479, 12025. https://doi.org/10.1088/1755-1315/479/1/012025

  • Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J. L.; Harris, E.; Robinson, B.; Sizmur, T. A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environ. Pollut. 2011, 159 (12), 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

  • Liu, W.-J.; Jiang, H.; Yu, H.-Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ. Sci. 2019, 12 (6), 1751–1779. https://doi.org/10.1039/C9EE00206E

This list was last updated on 2022-01-20.

Our publications

Below, we list publications from our research group at KTH and SLU, and other collaborations (click to expand).

  • Zakrisson, L., Azzi, E. S., & Sundberg, C. (2023). Climate impact of bioenergy with or without carbon dioxide removal: influence of functional unit and parameter variability. The International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-023-02144-2

  • Karan, S. K., Osslund, F., Azzi, E. S., Karltun, E., & Sundberg, C. (2023). A spatial framework for prioritizing biochar application to arable land: A case study for Sweden. Resources, Conservation and Recycling, 189, 106769. https://doi.org/10.1016/j.resconrec.2022.106769

  • Kätterer, T., Roobroeck, D., Kimutai, G. et al. Maize grain yield responses to realistic biochar application rates on smallholder farms in Kenya. Agron. Sustain. Dev. 42, 63 (2022). https://doi.org/10.1007/s13593-022-00793-5

  • Azzi, E. S., Karltun, E., & Sundberg, C. (2022). Life cycle assessment of urban uses of biochar and case study in Uppsala, Sweden. Biochar, 4(1), 18. https://doi.org/10.1007/s42773-022-00144-3

  • Papageorgiou, A., Azzi, E. S., Enell, A., & Sundberg, C. (2021). Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts. Science of The Total Environment, 145953. https://doi.org/10.1016/j.scitotenv.2021.145953

  • Mahmoud, Y., Njenga, M., Sundberg, C., & Roing de Nowina, K. (2021). Soils, sinks, and smallholder farmers: Examining the benefits of biochar energy transitions in Kenya. Energy Research & Social Science, 75, 102033. https://doi.org/10.1016/j.erss.2021.102033

  • Azzi, E. S., Karltun, E., & Sundberg, C. (2021). Assessing the diverse environmental effects of biochar systems: An evaluation framework. Journal of Environmental Management, 286, 112154. https://doi.org/10.1016/j.jenvman.2021.112154

  • Azzi, E. S., Karltun, E., & Sundberg, C. (2021). Small-scale biochar production on Swedish farms: A model for estimating potential, variability, and environmental performance. Journal of Cleaner Production, 280, 124873. https://doi.org/10.1016/j.jclepro.2020.124873

  • Azzi, E. S., Karltun, E., & Sundberg, C. (2019). Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm. Environmental Science & Technology, 53(14), 8466–8476. https://doi.org/10.1021/acs.est.9b01615

To keep up to date with our work, follow Google Scholar and university publication profiles from our team members, e.g. Cecilia Sundberg (SLU), Azzi Elias, Lisa Zakrisson.


*Peer-reviewed publications containing the keyword biochar published annually, as indexed in Scopus*
Peer-reviewed publications containing the keyword biochar published annually, as indexed in Scopus

Webinars

In the news

MSc and BSc theses

Master and bachelor students write their theses with us on biochar. Here is a selection of recent ones (titles are linked to the publications):

MSc:

BSc:

Older thesis can be found online on university search engines: