Resurser

Data, modeller, referenser, mm

Vetenskaplig litteratur - ett urval

Mellan tidigt 2000-tal och 2020 publicerades mer än 15 000 forskningsartiklar som hade biokol som sökord i akademiska tidskrifter. Under 2020 publicerades cirka 4000 artiklar. Det motsvarar mer än 10 nya artiklar varje dag. I den här takten är det bokstavligen omöjligt – för forskare såväl som enskilda – att läsa all forskning som finns om biokol.

Därför föreslår vi nedan några huvudreferenser, grupperade efter ämnen (klicka för att expandera):

  • Bird, M. I.; Wynn, J. G.; Saiz, G.; Wurster, C. M.; McBeath, A. The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43 (1), 273–298. https://doi.org/10.1146/annurev-earth-060614-105038

  • Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal – a Review. Biol. Fertil. Soils 2002, 35 (4), 219–230. https://doi.org/10.1007/s00374-002-0466-4

  • Kern, D. C.; Lima, H. P.; da Costa, J. A.; de Lima, H. V; Browne Ribeiro, A.; Moraes, B. M.; Kämpf, N. Terras Pretas: Approaches to Formation Processes in a New Paradigm. Geoarchaeology 2017, 32 (6), 694–706. https://doi.org/10.1002/gea.21647

  • Hagemann, N.; Spokas, K.; Schmidt, H.-P.; Kägi, R.; Böhler, A. M.; Bucheli, D. T. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10 (2). https://doi.org/10.3390/w10020182

  • Lehmann, J.; Cowie, A.; Masiello, C.; Kammann, C.; Woolf, D.; Amonette, J.; Cayuela, M.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat Geosci (in Press. 2021, 14 (December). https://doi.org/10.1038/s41561-021-00852-8

  • Woolf, D.; Amonette, J. E.; Street-Perrott, F. A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. https://doi.org/10.1038/ncomms1053

  • Tisserant, A.; Morales, M.; Cavalett, O.; Toole, A. O.; Weldon, S.; Rasse, D. P.; Cherubini, F. Resources , Conservation & Recycling Life-Cycle Assessment to Unravel Co-Benefits and Trade-Offs of Large-Scale Biochar Deployment in Norwegian Agriculture. Resour. Conserv. Recycl. 2021, No. September, 106030. https://doi.org/10.1016/j.resconrec.2021.106030

  • Matuštík, J.; Hnátková, T.; Kočí, V. Life Cycle Assessment of Biochar-to-Soil Systems: A Review. J. Clean. Prod. 2020, 259, 120998. https://doi.org/10.1016/J.JCLEPRO.2020.120998

  • Sundberg, C.; Karltun, E.; Gitau, J. K.; Kätterer, T.; Kimutai, G. M.; Mahmoud, Y.; Njenga, M.; Nyberg, G.; Roing de Nowina, K.; Roobroeck, D.; Sieber, P. Biochar from Cookstoves Reduces Greenhouse Gas Emissions from Smallholder Farms in Africa. Mitig. Adapt. Strateg. Glob. Chang. 2020. https://doi.org/10.1007/s11027-020-09920-7

  • Peters, J. F.; Iribarren, D.; Dufour, J. Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. Environ. Sci. Technol. 2015, 49 (8), 5195–5202. https://doi.org/10.1021/es5060786

  • Roberts, K. G.; Gloy, B. A.; Joseph, S.; Scott, N. R.; Lehmann, J. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 2010, 44 (2), 827–833. https://doi.org/10.1021/es902266r

  • Woolf, D.; Lehmann, J.; Lee, D. R. Optimal Bioenergy Power Generation for Climate Change Mitigation with or without Carbon Sequestration. Nat Commun 2016, 7, 13160. https://doi.org/10.1038/ncomms13160

  • Ippolito, J. A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J. M.; Fuertes-Mendizabal, T.; Cayuela, M. L.; Sigua, G.; Novak, J.; Spokas, K.; Borchard, N. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2 (4), 421–438. https://doi.org/10.1007/s42773-020-00067-x

  • Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054

  • Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H. P.; Smebye, A. B.; Cornelissen, G. Waste Timber Pyrolysis in a Medium-Scale Unit: Emission Budgets and Biochar Quality. Sci. Total Environ. 2020, 137335. https://doi.org/10.1016/J.SCITOTENV.2020.137335

  • Cornelissen, G.; Pandit, N. R.; Taylor, P.; Pandit, B. H.; Sparrevik, M.; Schmidt, H. P. Emissions and Char Quality of Flame-Curtain “Kon Tiki” Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS One 2016, 11 (5), e0154617. https://doi.org/10.1371/journal.pone.0154617

  • Woolf, D.; Lehmann, J.; Fisher, E. M.; Angenent, L. T. Biofuels from Pyrolysis in Perspective: Trade-Offs between Energy Yields and Soil-Carbon Additions. Environ. Sci. Technol. 2014, 48 (11), 6492–6499. https://doi.org/10.1021/es500474q

  • Kan, T.; Strezov, V.; Evans, T. J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.185

  • Sharma, A.; Pareek, V.; Zhang, D. Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

  • Joseph, S.; Cowie, A. L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M. L.; Graber, E. R.; Ippolito, J. A.; Kuzyakov, Y.; Luo, Y.; Ok, Y. S.; Palansooriya, K. N.; Shepherd, J.; Stephens, S.; Weng, Z. (Han); Lehmann, J. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021. https://doi.org/10.1111/gcbb.12885

  • Schmidt, H.-P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T. D.; Sánchez Monedero, M. A.; Cayuela, M. L. Biochar in Agriculture – A Systematic Review of 26 Global Meta-Analyses. GCB Bioenergy 2021. https://doi.org/10.1111/gcbb.12889

  • Tisserant, A.; Cherubini, F. Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation. L. 2019, 8 (12). https://doi.org/10.3390/land8120179

  • Campos, J.; Fajilan, S.; Lualhati, J.; Mandap, N.; Clemente, S. Life Cycle Assessment of Biochar as a Partial Replacement to Portland Cement. IOP Conf. Ser. Earth Environ. Sci. 2020, 479, 12025. https://doi.org/10.1088/1755-1315/479/1/012025

  • Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J. L.; Harris, E.; Robinson, B.; Sizmur, T. A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environ. Pollut. 2011, 159 (12), 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023

  • Liu, W.-J.; Jiang, H.; Yu, H.-Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ. Sci. 2019, 12 (6), 1751–1779. https://doi.org/10.1039/C9EE00206E

Denna lista uppdaterades senast den 2022-01-20.




*Peer-reviewed publikationer som innehåller nyckelordet biokol publiceras årligen, som indexeras i Scopus*
Peer-reviewed publikationer som innehåller nyckelordet biokol publiceras årligen, som indexeras i Scopus

Webinars