

Life cycle assessment and material flow analysis of urban biochar applications A case study in Uppsala, Sweden

> 2021-09-06 Elias Azzi, PhD Candidate at KTH/SEED

Biochar, in brief

3 LCA questions on biochar in urban environments

Reflections on biochar in the scope of today's session

Biochar, in brief

"Biochar is the solid residue obtained from the pyrolysis of biomass. It is similar in appearance to charcoal, but differs by its applications."

> Pyrogenic material, carbonized biomass, charcoal, bio-coal, activated carbon, biochar

Carbon Dioxide Removal

 \neq biomass

Forest residues Garden waste

other

residues

...

Wood pellets

Sludge

Biochar, in brief

Agriculture

Some urban & industrial applications

© Stockholm city

© VegTech AB

© Hasselfors AB

© StockholmsTreePits Co., St Eriks AB © Wikipedia Commons

Asphalt, Electronics, Remediation

...

3 LCA questions on biochar in urban environments

What are the environmental impacts & benefits of biochar-based products?

1. What is the climate impact of producing biochar?

WP = Wood Pellets GW = Garden Waste LR = Logging Residues WL = Willow chips

> S = Syngas E = Electricity M = Mobile

In Swedish average energy system & Natural gas energy system EF range: 70 – 350 kg CO₂-eq per m³ biochar (without C sink)

Takeaways

C sink per volume can vary 3-fold between biochars, from 600 to 1700 kg CO₂-eq per m³ biochar

 Biochars are different. Cradle-to-gate emission factors (EF) for biochar can easily be computed, but they must be supply-chain

 Specific.
 RLBU
 Pyrolysis
 Transport
 Reactor
 C sink

 Net score
 • Net score without C-sink

2. Is it a climate-*efficient* use of biomass?

→ Functional Unit = 1 tonne of resource produced and used

- Besides, concepts of market segmentation & market shares
 - Biomass markets are segmented: not all biomass is suited for all uses
 - A market is shared between several technologies, biochar is one of them

3. At the city scale, to how much does it add up?

- About 2000 m³ year⁻¹ of biochar for 25 years (57 000 inhabitants)
- C sink is up to 1/10th of the emissions from building construction
- Fixed lifetime of infrastructure will lead to biochar waste flows to be managed in end of the century

4. [bonus] What about other environmental impacts?

ILCD impact categories

Reflections on biochar in the scope of today's session

"Carbon inventory and Management of biobased materials for a post-fossil economy"

- <u>Like</u> the bio-based economy, biochar systems are flourishing of diversity (feedstock, conversion, application) with differentiated environmental profiles & involving dynamic carbon flows. They are more challenging to assess than the fossil-based economy.
- <u>Unlike</u> other biomaterials & fossil products, biochar is not valorised as energy when it reaches end-of-life. That is part of the energy penalty of long-term carbon sequestration via biochar. Alternatively, many <u>biomaterials reaching end-of-life could</u> <u>be turned into biochar</u> for a secondary use.
- Biochar products are a <u>local carbon sink</u>, spread in the urban and rural environment. Keeping track of such carbon stocks and flows is not straightforward. LCA data must be re-shaped before it can be used for municipal accounting purposes. <u>Same data</u>, but different accounting framework.

Keywords:

Industrial ecology Life cycle assessment Energy, agriculture and climate Biochar

Previous work

Case study 1 – Prospective large-scale biochar production in Stockholm, and use in dairy farming https://pubs.acs.org/doi/10.1021/acs.est.9b01615

Case study 2 – On-farm small-scale biochar production at Lindeborgs farm https://doi.org/10.1016/j.jclepro.2020.124873, https://github.com/ntropy-esa/P2_farm_biochar

Case study 3 – Biochar from wood waste used for contaminated soil remediation https://doi.org/10.1016/j.scitotenv.2021.145953

Methodology – Assessing the diverse side-effects of biochar https://doi.org/10.1016/j.jenvman.2021.112154

2019 Webinar – Overview of biochar deployment in Sweden & related life cycle assessments https://www.youtube.com/watch?v=Wd1aSp3Fp-E

2021 Webinar – Life cycle assessment of 6 urban applications of biochar & case study in Uppsala https://www.youtube.com/watch?v=PflGIUWJnkw

https://biochar.abe.kth.se

Elias Azzi eazzi@kth.se

Erik Karltun erik.karltun@slu.se

Cecilia Sundberg cesu@kth.se

