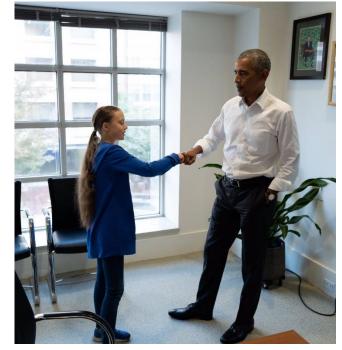
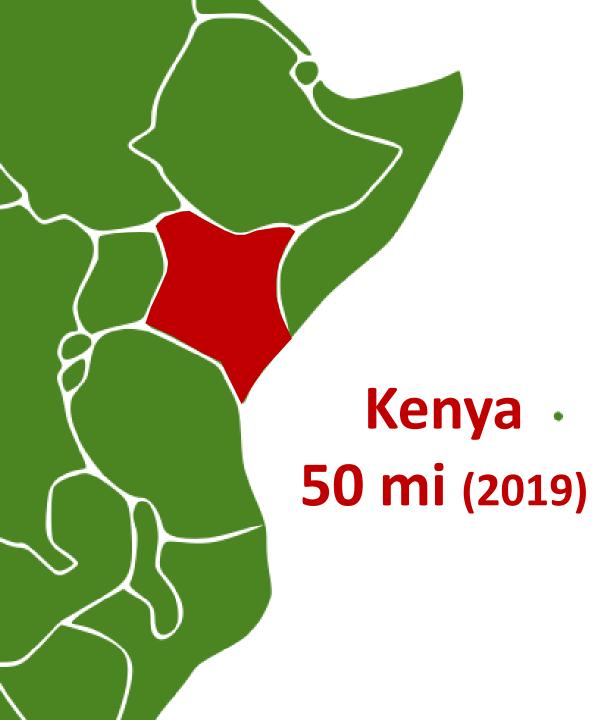


Household biochar production and use by smallholder farmers in Kenya


Cecilia Sundberg, KTH Royal Institute of Technology James K Gitau, University of Nairobi Mary Njenga, World Agroforestry Centre Thomas Kätterer, Swedish University of Agricultural Sciences Ruth Mendum, Penn State University Kristina Roing de Nowina, CGIAR

Funded by Swedish research councils VR and Formas

"Strikers are calling on people all over the world to join a week of escalated climate action Why: To show solidarity with the youth-led strike, shine light on the failures and demand immediate climate action from all governments and corporations"

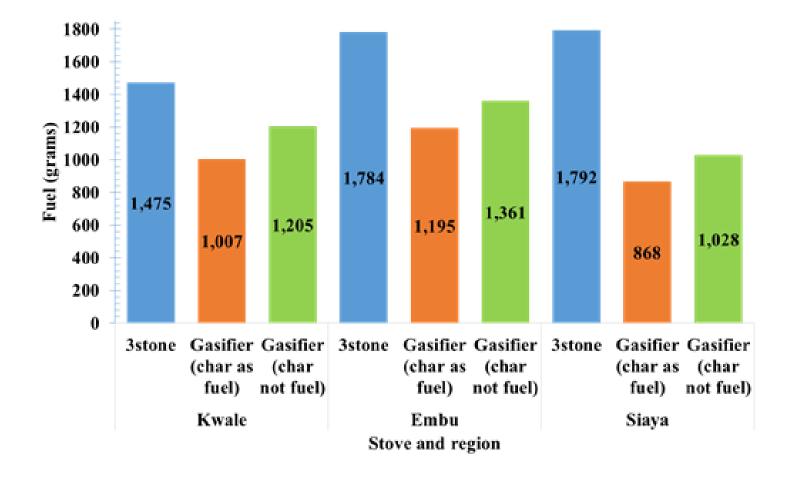


Challenges ahead...

Research project 3 sites * 50 households 2006 - 2014 - 2019

Wood fuels – large variety

- Large variation of wood fuels and sources
- Trees on farms (prunings) dominant source
- 1-2 dominant species in each site
 - Siaya: Markhamia lutea
 - Embu: Grevillea, Coffee
 - Kwale: Neem, Casuarina
- Agricultural residues for fuel:
 - Coconut husks
 - Potentially coffee husks



Fuel use efficiency

Reduced indoor air concentrations of $\rm PM_{2.5}$ and CO

Concentrations measured in the kitchen		PM _{2.5} (µg/m ³)	CO (ppm)	CO ₂ (ppm)
during cooking	Embu	320 ± 410	9.9 ± 8.4	590 ± 63
1.5 m above ground, 1 m from stove	Siaya	160 ± 170	8.5 ± 8.3	619 ± 70
	Kwale	290 ± 950	7.5 ± 10.4	601 ± 253

Kitchen concentrations during cooking compared to open fire:

- CO reduced by 57 95% in the three sites
- PM_{2.5} reduced by 79 97%

CO concentrations are below WHO guidelines 1 h exposure

Biochar production

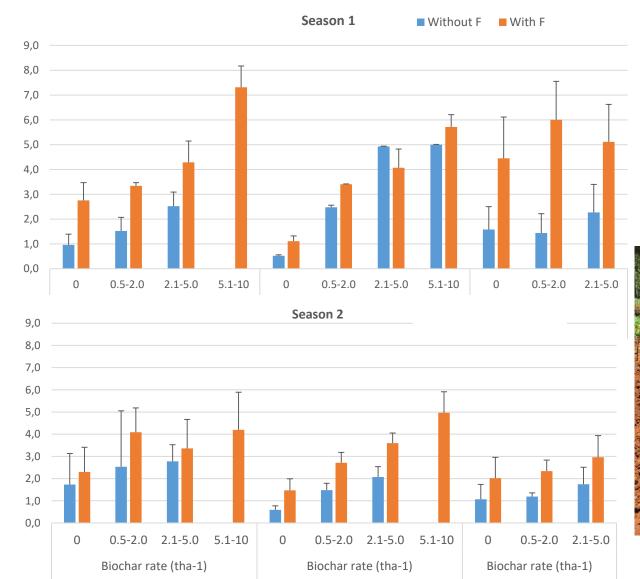
- Average 200 g produced per meal
- Biochar yield 16.5 % of fuel mass

Biochar quality

	Biomass				Biochar					
Tree species	Ash 550°C	VM	Fixed	Calorific	Ash 550°C	VM	Fixed	Calorific	рΗ	BET
	(% dw)	(% dw)	carbon	value	(% dw)	(% dw)	carbon	value		Surface
			(% dw)	(MJ/kg)			(%dw)	(MJ/kg)		area
										m²/g
Mucuca	0.6	83.1	16.3	17.8	4.1	9.5	86.4	29.9	9.0	254
Muriru	0.7	82.9	16.4	17.9	2.4	10.2	87.5	30.9	8.9	293
Coffee	1.7	80.6	17.7	18.2	3.9	9.8	86.4	30.1	8.6	143
Macadamia	1.1	81.1	17.8	17.8	3.1	10.3	86.6	30.6	8.7	257
Grevillea	0.8	81.7	17.5	18.2	3.1	8.7	88.2	30.1	8.3	135
Neem (n=10)	2.2±0.3	79.4±0.6	18.4±0.4	18.4±0.1	4.8±0.3	10.4±0.5	84.8±0.6	32±0.1	-	-
Casuarina (n= 9)	1.4±0.1	81.4±0.3	17.2±0.3	18.4±0.1	3.4	10.9±0.7	87.5	32.4±0.2	-	-

The cookstove functions well, but

Challenges:


- Lighting
- Refilling
- Cutting wood
- Learning to cook various meals
- Saving biochar to planting season

Most families use the gasifier stove , but most of them don't use it every day

Maize yield

- field trials comparing biochar to normal farming practices
- farmers used biochar from cookstoves
- biochar doses
 1-10 tonnes/ha
- biochar applied in furrows
- hybrid seeds provided
- 2 seasons

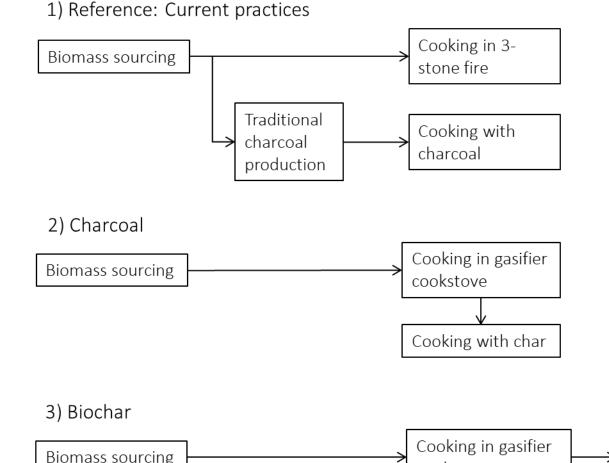
Kwale

Siaya

Embu

Maize & kale yield

Kale yield


- 2 sites, 1-2 seasons
- Large variability
 due to variable rainfall
- Average yield increases observed

Maize & kale yield

Climate impact – Greenhouse gas balance (LCA)

cookstove

• From fuel to biochar

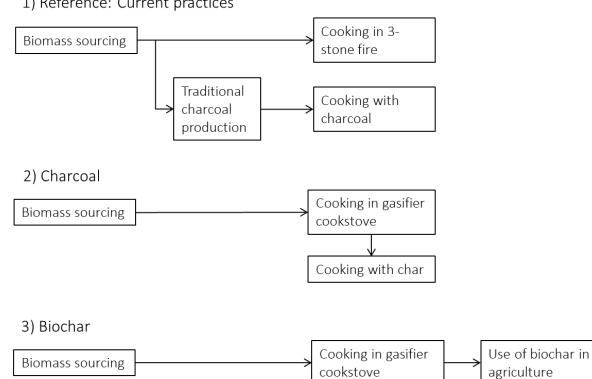
- Biochar C sequestration
- CO₂, CH₄, N₂O

Use of biochar in

agriculture

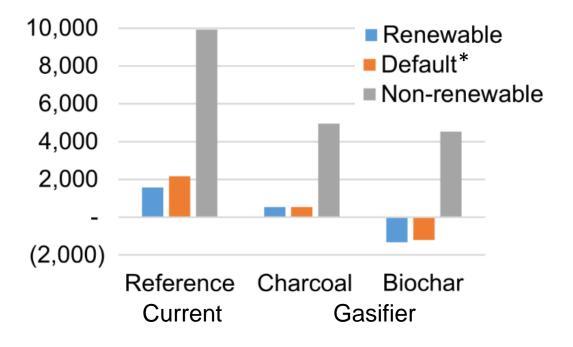
Effects of increased
 agricultural yield not included

Climate


change

mitigation

Functional unit: cooking for one household for one year


Climate impact – Greenhouse gas balance

Climate change mitigation

1) Reference: Current practices

kg CO₂e per household per year

*mostly renewable, minor share non-renewable

Conclusions

Biochar production in cookstoves can provide multiple benefits:

- Reduced fuel use
- Reduced indoor air pollution
- Less drudgery for women
- Increased crop yields

- If non-renewable biomass fuel: large GHG emission reductions
- If renewable fuel: net negative GHG emissions

Publications (more upcoming)

Papers in peer-reviewed scientific journals

- Gitau, K. J.; Mutune, J.; Sundberg, C.; Mendum, R.; Njenga, M. Factors Influencing the Adoption of Biochar-Producing Gasifier Cookstoves by Households in Rural Kenya. *Energy Sustain. Dev.* **2019**, *5*2, 63–71; DOI.
- Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; Röing de Nowina, K. Biochar Addition Persistently Increased Soil Fertility and Yields in Maize-Soybean Rotations over 10 Years in Sub-Humid Regions of Kenya. *F. Crop. Res.* 2019, 235, 18–26
- Gitau, J.K., Mutune, J., Sundberg, C., Mendum, R., Njenga, M. 2019. Implications on Livelihoods and the Environment of Uptake of Gasifier Cook Stoves among Kenya's Rural Households. *Applied Sciences. 9*, 1205.
- Njenga, M, Mahmoud Y, Mendum R, Iiyama M, Jamnadass R, Roing de Nowina K, Sundberg C. 2017. Quality of charcoal produced using micro gasification and how the new cook stove works in rural Kenya. Environmental Research Letters. 12(9),095001
- Njenga M, liyama M, Jamnadass R, Helander H, Larsson L, de Leeuw J, Neufeldt H, Roing de Nowina K, Sundberg C. 2016. Gasifier as a cleaner cooking system in rural Kenya. Journal of Cleaner Production. 121, 208-217.

Book chapters

 James K. Gitau, Ruth Mendum and Mary Njenga. 2018. Gender and Improvement of Cooking Systems with Biocharproducing Gasifier Stoves. In: Njenga, M.; Mendum, R. (Eds.). 2018. Recovering bioenergy in Sub-Saharan Africa: gender dimensions, lessons and challenges. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). (Resource Recovery and Reuse: Special Issue). doi: 10.5337/2018.226

Thank you!

Cecilia Sundberg Associate Professor Dept. Sustainable Development, Environmental Science and Engineering KTH Royal Institute of Technology Stockholm Sweden www.biochar.abe.kth.se

Don't forget!

Funded by Swedish research councils VR and Formas