

Large-scale biochar production and use in Stockholm A prospective life cycle assessment

October, 2019

Published 2019/06

Elias S. Azzi,**¹⁰ Erik Karltun,[‡] and Cecilia Sundberg^{†,0}

[†]Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm 100 44, Sweden

¹Department of Soil and Environment and ¹Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala 750 07, Sweden

O Supporting Information

ABSTRACT: Several cities in Sweden are aiming for climate neutrality within a few decades and for negative emissions thereafter. Combined biochar, heat, and power production is an option to achieve carbon sequestration for cities relying on biomass-faelled district heating, while biochar use could mitigate environmental pollution and greenhouse gas emissions from the agricultural sector. By using prospective life cycle assessment, the climate impact of the pyrolysis of woodchips in Stockholm is compared with two reference scenarios based on woodchip combustion. The pyrolysis of woodchips produces heat and power for the city of Stockholm, and biochar whose potential use as a feed and manure additive on Swedish dairy farms is explored. The

climate change mitigation trade-off between bioenergy production and biochar carbon sequestration in Stockholm's context is dominated by the fate of marginal power. If decarbonisation of power is achieved, building a new pyrolysis plant becomes a better climate option than conventional combustion. Effects of cascading biochar use in animal husbandry are uncertain but could provide 10–20% more mitigation than direct biochar soil incorporation. These results help design regional biochar systems that combine negative carbon dioxide emissions with increased methane and nitrous oxide mitigation efforts and can also guide the development of minimum performance criteria for biochar products. 250 000 tons/year woodchips ~60 000 tons/year biochar

~ 7 tons/hour biochar

http://doi.org/10.1021/acs.est.9b01615

Stockholm's context

Among fastests growing cities in Europe

Biomass-fuelled district heating network, phased out most fossil fuels in past decades

Ambitious climate goals set by municipalities

What kind of district heating plant should we build next? What would be the most 'climate efficient' use of biomass in Stockholm's district heating network? Would a biochar plant be 'better' than today's state-of-the-art?

(KTH)

Trade-offs: biochar or bioenergy

Ecosystem services

Six scenarios

Scenarios 1a-d: Pyrolysis with biochar production in	Stockholm and use as feed and	l manure additive	
Woodchip production woodchip Pyrolysis	Biochar biochar, 6%	biochar, 94%	
1 ton wood \rightarrow 1.6 – 3.4 MWh	heat + 0 – 0.9 MWł	h power + 210 – 360 kg bioch	ar
1b. θ = 31%, η = 12%, β = 36% 1c. θ = 66%, η = 0.0%, β = 21% 1d. θ = 43%, η = 0.0%, β = 36%	Power grid holm energy system	Manure land applicationSoil organic carbon primingAvoided m fertiliser application	ineral dication

Scenario 2, CHP: Combustion for CHP in Stockholm	Scenario 3, PP: Combustion for power in Sweden			
$\begin{array}{c c} \hline Woodchip production \\ and supply \\ \hline \ 1 \ ton \ woodchip \\ \hline \ 1 \ ton \ woodchip \\ \hline \ 0 = 70\%, \ \eta = 33\% \\ \hline \ 0 = 70\%, \ \eta = 33\% \\ \hline \ 0 = 50\% \\ \hline \ 0 = 50\% \hline 0 = 50\% \\ \hline \ 0 = 50\% \\ \hline \ 0 = 50\% \hline 0 = 50\% \hline \ 0 = 50\% \hline 0 = 50\% \hline 0 = 50\% \hline \ 0 = 50\% \hline 0 $	$\begin{array}{c c} \hline Woodchip production \\ and supply \\ \hline \\ 1 \ ton \ woodchip \\ \hline \\ 1 \ ton \ woodchip \\ \hline \\ Plant \ configuration: \\ \eta = 40\% \\ \hline \\ \hline \\ rhower \\ \hline \\ \hline \\ rhower \\ \hline \\ \hline \\ \hline \\ rhower \\ \hline \\ \hline \\ \hline \\ rhower \\ \hline \\ $			

Some pictures...

Woodchip production and supply

Some more pictures...

Some more pictures (bis)...

© CharLine GmbH

Biochar use

Everything together... a life-cycle !

Climate impact of many configurations

- Biochar agricultural effects
- Biochar C sequestration
- Electricity substitution (CHP)¹
- Electricity substitution (HP)¹
- Heat substitution²
- Production and transport

×Net

6 scenarios x 4 background energy systems x 3 ranges of biochar agricultural effects

= *too many* configurations for today!

Climate impact at production

2020

- Biochar transport
- Plant operations
- Ash to landfill transportation
- Woodchip transporation
- Forest SOC losses
- Forest operations

Climate impact after energy use

2020

Electricity substitution (CHP)¹

Electricity substitution (HP)¹

Heat substitution²

Production and transport

XNet

Marginal electricity 2020 from IVL, EF = 277kg/GWh el

Fuels (GWh)	Scenarios			
	BAU	2	1a	
Woodchip-eq	5398	4942	5021	
Waste	4183	4183	4183	
El. for HP	739	610	677	
El. for CHP	36	93	63	
Other fuels	541	457	503	
Electricity output	1574	1998	1735	

Fuels & outputs at the city-scale after introduction of a new plant

KTH KTH

Climate impact after biochar use

2020

- Biochar agricultural effects
- Biochar C sequestration
- Electricity substitution (CHP)¹
- Electricity substitution (HP)¹
- Heat substitution²
- Production and transport
- $\times Net$

Step	Avoided clima (kg CO2-eq/ton	ate impact woodchips)	CH4	d-N ₂ O	i-N ₂ O	CO ₂ -f	CO ₂ -bio	CO ₂ -py
Enteric fermentation	32	4,6%	100%	-	-	-	-	-
Manure storage	58	8,2%	95%	4%	2%	-	-	-
Manure application	38	5,3%	-	68%	32%	-	-	-
Mineral fertiliser application	53	7,4%	-	87%	13%	-	-	-
Mineral fertiliser production	9,2	1,3%	-	-	-	100%	-	-
Avoided liming production	2,2	0,3%				100%		
Soil methane sink	-7,9	-1,1%	100%	-	-	-	-	-
Slurry transport and spreading	-1,2	-0,2%	-	-	-	100%	-	-
Sub total: agricultural effects	183	26%	43%	40%	11%	4%	-	-
Field SOC increase	32	4,6%	-	-	-	-	100%	-
Biochar C sequestration	493	70%	-	-	-	-	-	100%
Total	708	}	11%	10%	2,8%	1,4%	4,6%	70%

Disappointing? Life cycle interpretation needed!

- Biochar agricultural effects
- Biochar C sequestration
- Electricity substitution (CHP)¹
- Electricity substitution (HP)¹
- Heat substitution²
- Production and transport
- ×Net

Biochar use phase How certain are the biochar effects?

Parameter sensitivity What if yields/efficiencies are changed?

Energy penalty

2040

Biochar agricultural effects

Biochar C sequestration

Electricity substitution (CHP)¹

Electricity substitution (HP)¹

Heat substitution²

Production and transport

× Net

Long-term marginal electricity, Sweden (IVL, 2017)

Timeframe	gCO ₂ -eq kWh ⁻¹	gCO ₂ -eq GJ ⁻¹	
2020	1000	277	Coal & natural gas
2030	550	153	Natural gas
2040	200	56	Efficient natural gas & other

(KTH)

Biochar effects: explorative modelling 2

Parameter sensitivity

- Biochar agricultural effects
- Biochar C sequestration
- Electricity substitution (CHP)¹
- Electricity substitution (HP)¹

1c

0

0.21

1d

0

0.36

- Heat substitution²
- Production and transport

If electricity is already decarbonised,

- Trade-off is in favour of biochar production
- Investing in a costly turbine is not necessary

17

Final word

At the large-scale envisioned in this study, where woodchips are sourced on the global market, the suitability of biochar systems in Stockholm is subject to the decarbonisation of the electricity market and other carbon-intensive sectors. If this decarbonisation is achieved by 2040, biochar solutions would represent a suitable expansion for the district heating network, thereby providing a sound option for carbon dioxide removal. If agricultural effects of . biochar are optimised, through cascading use in animal husbandry, manure management and fertiliser management, the climate benefits of biochar could at best be doubled. Such a prospective development requires research efforts, in both upscaling of pyrolysis technologies and mechanistic understanding of biochar agricultural effects. When developing new biochar products, the life cycle perspective is useful to assess trade-offs and the relative importance of various potential effects.

The climate suitability of "using woodchips for biochar" is function of

(i) Developments in background energy system(ii) Performance of biochar in the field

In this study,

(i) Energy penalty was dominated by the fate of power production

(ii) Biochar effects in the field were exploratory rather than predictive, require manurerelated experiments and long-term carbon monitoring Keywords: Industrial ecology Life cycle assessment Energy and agriculture

Elias Azzi eazzi@kth.se

Time for feedback & questions

Erik Karltun erik.karltun@slu.se

Cecilia Sundberg cesu@kth.se

Summer Nights, Eugene Jansson, 1898